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Abstract
Various aspects of the implementation of pseudo-atomic orbitals (PAOs) as basis functions for
the linear scaling CONQUEST code are presented. Preliminary results for the assignment of a
large set of PAOs to a smaller space of support functions are encouraging, and an important
related proof on the necessary symmetry of the support functions is shown. Details of the
generation and integration schemes for the PAOs are also given.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Methods for O(N) or linear scaling density functional theory
(DFT) calculations [1] were first proposed over 15 years ago,
but it is only in the last five years that practical calculations
using these methods have begun to appear. The codes
now available [2–5] are of two types: those that use basis
sets akin to plane waves [6–10], allowing systematic basis-
set convergence; and those that use pseudo-atomic orbitals
(PAOs) as basis sets [2, 3, 11, 12], for which systematic
convergence is usually not possible. An important feature
of our own CONQUEST code [5, 13, 14] is that both types of
basis are implemented, and this means that rapid, though semi-
quantitative calculations can be performed for exploratory
purposes, but precise calculations are also possible. Our
purpose here is to discuss several issues concerning PAO basis
sets in O(N) DFT, some of which appear not to have been
adequately addressed before.

Linear scaling methods all depend on Kohn’s ‘near-
sightedness principle’ [15], which says that quantum
coherence is spatially localized. This can be expressed as a

5 Present address: National Institute for Materials Science, 1-2-1 Sengen,
Tsukuba, Ibaraki 305-0045, Japan.
6 Present address: Physics Department, King’s College London, Strand,
London WC2R 2LS, UK.

property of the Kohn–Sham density matrix ρ(r, r′), defined as:

ρ(r, r′) =
∑

n

fnψn(r)ψn(r′)�, (1)

where ψn(r) is the nth Kohn–Sham eigenfunction and fn is its
occupation number. Localization of coherence is expressed by
the statement that:

ρ(r, r′) → 0 as |r − r′| → ∞. (2)

This principle is exploited in CONQUEST and in some other
codes by expressing the DFT total energy Etot in terms of
ρ, so that the ground state is determined by minimizing Etot

with respect to ρ subject to the conditions that the latter is
idempotent and that it yields the correct number of electrons.
In practice, we express ρ in terms of localized orbitals φiα(r),
referred to as ‘support functions’ in CONQUEST:

ρ(r, r′) =
∑

iα, jβ

φiα(r)Kiα, jβφ jβ(r′). (3)

The φiα(r) are confined to spherical ‘support regions’ centred
on the atoms (αth support function on i th atom), and the
matrix Kiα, jβ can be regarded as the density matrix in the
representation of the non-orthogonal ‘basis’ of φiα . The
ground state is then sought by varying the φiα(r) and the
matrix Kiα, jβ , subject to idempotency and correct electron
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number. The heart of the CONQUEST idea is thus that the support
functions φiα , while in one sense playing the role of basis
functions, are flexible functions, which should themselves be
represented in terms of basis functions.

The systematically improvable basis set used to represent
the support functions in CONQUEST consists of B-splines (blip
functions) [6], which are a type of finite-element basis. The
blip grid spacing is associated with a plane-wave cutoff, as
explained in detail elsewhere, and we approach the basis-set
limit as we refine this spacing, in exactly the same way as basis-
set convergence is obtained in plane-wave methods. This blip
basis has been treated in detail in earlier papers, and the focus
of the present work is on the PAO basis sets that can also be
used to represent the support functions in CONQUEST.

Each PAO consists of a radial function Rl(r) multiplied
by a spherical harmonic Y m

l . To achieve reasonable accuracy,
we must use multiple-zeta basis sets, in which there is more
than a single radial function for each l. For a given multiple-
zeta PAO basis, there is more than one way of defining the
support functions. At one extreme, one can define the support
functions and PAOs to be the same thing. If we do this, the
support functions have no flexibility at all, but we obtain the
best ground state possible with the given PAO basis. At the
other extreme, one can try to work with the smallest possible
set of support functions, each one being represented as a
linear combination of PAOs [3, 16–18]. The search for the
ground state then involves variation of the coefficients in these
linear combinations. There are potentially major advantages
in working in this way, because it allows the dimension of the
matrix Kiα, jβ to be greatly reduced, but the ground state will
then be less well approximated. We shall present illustrative
calculations that shed light on this trade-off.

A question that is closely related to this is that of the
symmetry of support functions. In cases where atoms are at
high-symmetry sites, the point-group symmetry may impose
conditions on the irreducible representations that can appear
in the support functions, and this in turn can place constraints
on the relationships between support functions and PAOs. We
shall present a theory that formulates these constraints, and we
shall explore the consequences of disregarding them.

The other issue examined here concerns the choice of
PAO basis functions. It is well known that there are different
approaches to the construction of these functions, some of
which may be better than others. We shall report some
evidence that the approach adopted in the SIESTA code may
be particularly effective. Finally, we comment briefly on
the techniques used for calculating matrix elements between
numerical PAOs. The techniques used in CONQUEST are quite
close to those employed in SIESTA, but we note a point of
difference that may be of interest.

Since we examine here a set of loosely related issues,
it will be convenient to present the material concerned with
these issues in three separate sections, in each of which we
summarize the theory followed immediately by the results
of our tests. We note that the present contribution to the
proceedings of the CECAM workshop ‘Linear scaling ab initio
calculations: applications and future directions’ is a report
of work in progress, and in some cases the calculations are

intended only to be illustrative. We plan to publish a fuller
report on the issues discussed here in due course.

2. Support functions and PAOs

The support functions in CONQUEST can be represented in terms
of PAOs:

φiα(r) =
∑

lmζ

clmζ
iα Rlζ (r)Y

m
l (r̂), (4)

where multiple radial functions (multiple zetas) are possible.
In order to form matrix elements (for the overlap and
Hamiltonian matrices) integrals between PAOs must be
formed; this procedure is summarized in appendix A, with
the emphasis on differences to other, similar schemes. The
question of generation of radial functions is addressed in
section 4. Here, we are concerned with the manner in which
PAOs are assigned to support functions; the term contraction
is used when there are fewer support functions than PAOs, and
thus multiple PAOs contribute to each support function. This
section will present results on the effects of contraction.

There are two extremes in this process: on the one hand,
having the smallest number of support functions consistent
with the local symmetry; on the other hand, having the
same number of support functions as PAOs and each support
function represented by one PAO (though, as will be shown
below, taking linear combinations of the support functions on-
site does not change the density matrix). The first is desirable
for efficiency, as the effort required both for linear scaling
and exact diagonalization solutions will scale with the cube
of the number of support functions on each site. However,
restricting the space of the support functions will inevitably
raise the energy of the system as variational freedom is lost;
thus for best accuracy, the second is desirable. Inevitably,
some compromise between performance and accuracy must be
chosen. We present here demonstration calculations on the
total energy of glycine when contracting the PAO functions
into a smaller set of support functions (while obeying the
symmetry constraints discussed in section 3). Two basis sets
are used: double zeta plus polarization (DZP: 13 PAOs for
C, N and O, and 5 PAOs for H) and triple zeta plus triple
polarization (TZTP: 27 PAOs for C, N and O, and 12 PAOs for
H). In both cases, the hydrogen atoms are contracted into four
support functions, while different contractions are used for C,
N and O (6 and 9 for DZP and 6, 9 and 18 for TZTP); results
for contracting just the orbitals on hydrogen while leaving C,
N and O uncontracted were also obtained. The energy relative
to the uncontracted energy is shown in figure 1. A number of
important observations can be made. First, the more contracted
a basis (i.e. the fewer support functions) that is used, the larger
the energy shift. This is entirely reasonable (more contraction
implies less variational freedom), and it is reassuring to see
that the magnitude of the energy shift is in the millihartree per
atom range. Second, if the PAO basis contains polarization
functions (generally angular momentum functions up to l = 2),
then with nine support functions extremely good convergence
can be achieved (within ∼1 mHa/atom). These preliminary
calculations are encouraging, and a full investigation will be
presented in a future publication.
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Figure 1. Effects of contraction of PAOs on energy of glycine. Basis
sets with double zeta plus polarization (DZP) and triple zeta plus
triple polarization (TZTP) are contracted. Energy differences per
atom are given relative to uncontracted result.

3. Symmetry constraints

It often happens that atoms are at sites of point-group
symmetry. In this case, it is an important principle that the
space spanned by the support functions at such a site must
decompose into complete irreducible representations of the
point group. A formal proof of this principle is given in
appendix B. The practical importance of this is that if the
principle is not respected then symmetry will generally be
broken in an unphysical way, as will now be demonstrated.

One particular example would be carbon or silicon in the
diamond structure. Here, the support functions should break
down into irreducible representations of the tetrahedral point
group. Let us consider the symmetries of different pseudo-
atomic orbitals: s-functions are A1; p-functions are T2; the d-
functions split into E (x2−y2, 3z2−r 2) and T2 (xy, yz and zx).
If we consider only one-to-one SF-PAO assignment (i.e. no
contraction) and a single function per angular momentum
channel, then it is safe to work with four SFs (using only
s, p PAOs); six SFs (using s, p and the Eg d PAOs); seven
SFs (using s, p, and T2g d PAOs); nine SFs (using s, p and
all d PAOs). The extension to multiple functions per angular
momentum is trivial. Considering contraction (i.e. less SFs
than PAOs), then PAOs of the same symmetry can be mixed
in the same SFs (e.g. p and T2 d, or different functions for the
same angular momentum), as shown in table 1. Working with
other combinations is dangerous, and can lead to symmetry
breaking (e.g. forces whose directions break the symmetry)
though energy may be lowered on addition of basis functions.
In particular, though chemical intuition might suggest choosing
four support functions (to reflect tetrahedral symmetry) this
would lead to symmetry breaking if d PAOs were used in the
basis set.

As an example of the problems which can arise, we
calculate the magnitude and direction of forces on the
hydrogen atoms in an isolated methane molecule with perfect
tetrahedral bond angles; the bond lengths have been optimized
with a DZP basis without contraction, leaving residual forces

Table 1. Symmetry-preserving assignment of PAOs to support
functions for a DZP basis (two s, six p and five d-functions) in a
system with tetrahedral symmetry, for different numbers of support
functions (NSF). Note that the support functions to which each set of
PAOs is assigned are given as a number or a range; n/a indicates that
the PAO is not assigned to a support function. The d-functions are
split by symmetry.

NSF s p dxy,yz,zx dx2−y2,3z2−r2

4 1 2–4 2–4 n/a
6 1 2–4 2–4 5–6
7 1 2–4 5–7 n/a
9 1 2–4 5–7 8–9
9 1 2–7 2–7 8–9

10 1–2 3–5 6–8 9–10
10 1–2 3–8 3–8 9–10
12 1 2–7 8–10 11–12
13 1–2 3–8 9–11 12–13

of 0.011 eV Å
−1

along the tetrahedral directions. The basis
has thirteen functions for carbon and five for hydrogen. As
the methane molecule obeys tetrahedral symmetry, we would
expect there to be three sets of PAOs corresponding to three
different irreducible representations: s-functions (equivalent to
A); p-functions and three d-functions (equivalent to T2); and
two d-functions (equivalent to E). As the methane molecule
does not preserve inversion symmetry, the parity of p- and d-
functions does not split T2; however, the functions must have
the correct relative signs (so px is paired with −dyz , py is paired
with −dzx and pz is paired with +dxy).

While CONQUEST can optimize the coefficients of
contracted basis sets, it cannot optimize the coefficients of
basis sets with only a subgroup of d-functions (e.g. just the T2

functions), so the testing of symmetry-breaking assignments
has generally been done without optimization. The key test
for symmetry here is whether the forces remain symmetrical,
along the tetrahedral directions. Results are shown in
table 2 where ‘angle’ is defined as the average of the angles
between forces and the tetrahedral directions and ‘force’ is
the magnitude of the force. What is immediately clear is that
our conclusion above about irreducible representations is borne
out: having specific subsets of the d-functions (6a, 7a) does
not break symmetry, while assigning the wrong d-functions
to the wrong number of support functions (6c, 7b) breaks
symmetry, as does putting d-functions into a set of support
functions which does not allow spanning of the space (4b, 5).
Assigning the T2 d-functions to the same support functions as
the p-functions does not break symmetry, provided the correct
signs of the coefficients are chosen (4c, 6b).

The results of optimization of the support function
coefficients are shown in the final two columns of table 2,
only for selected assignments. It is possible to optimize the
coefficients so that we combine these PAOs without breaking
the local symmetry (4c, 6b), but not for improper assignments
(4b, 5, 6c, 7a); in particular, five support functions result in
different angles and magnitudes for the forces (indicated with
a star). The behaviour under optimization is complex, with
multiple minima. However, starting from 6a or 4a (symmetry
correct in PAO assignment to support functions but not all d-
functions assigned) and optimizing generates solutions which

3
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Table 2. Forces found for assignment of PAOs to support functions without optimization and after optimization for methane with DZP basis;
optimization was only performed for situations where all functions could be considered. The angle refers to the average angle between forces
on hydrogen and bond lengths (should be zero). PAO assignments to SFs are either symmetry breaking (SB) or symmetry conserving (SC),
and use the same format as in table 1. The star for five support functions indicates that the angles between forces and tetrahedral directions
differ from bond to bond. See text for details.

NSF Symm s p d(T2) d(E) Force Angle Force (Opt) Angle (Opt)

4a SC 1 2–4 n/a n/a 0.63 0.00 — —
4b SB 1 2–4 2–4 1 2.50 8.31 — —
4c SC 1 2–4 2–4 n/a 2.55 0.00 0.01 0.00
5 SB 1 2–4 5 5 1.10 1.82� — —
6a SC 1 2–4 n/a 5–6 1.09 0.00 0.01 0.00
6b SC 1 2–4 2–4 5–6 2.55 0.00 0.02 0.00
6c SB 1 2–4 5–6 n/a 1.13 0.24 — —
7a SC 1 2–4 5–7 n/a 1.15 0.00 — —
7b SB 1 2–4 n/a 5–7 1.11 0.24 — —
10 SC 1–2 3–8 n/a 9–10 0.05 0.00 0.02 0.00

both give the correct symmetry and mix the T2 d-functions
with p-functions spontaneously. The overall conclusion of this
section is that care needs to be exercised when choosing the
assignment of PAOs to support functions, so as to obey local
symmetries.

4. Construction of PAOs

The problem of how to generate radial functions to act as a
good basis has almost as many solutions as there are codes,
though these can be divided into different broad categories;
we highlight the following codes: SIESTA [2, 19–21];
OpenMX [3, 17, 22]; PLATO [12]; DMOL3 [23, 24]. The
approaches taken to generate basis functions, and the codes
which use them, are:

• Confinement (SIESTA: single energy shift chosen to give
different confinement for different l, split norm for
multiple zeta).

• Eigenvalues (OpenMX: the isolated atom is confined for
solution, including pseudo-potentials).

• Ionization state (PLATO, DMOL3).
• Polarization by increased angular momentum (OpenMX,

PLATO, DMOL3).
• Polarization by applied electric field (SIESTA).
• Hydrogenic or Rydberg states (DMOL3).

CONQUEST can read SIESTA basis files directly, and also has
a stand-alone code for PAO generation based on the PLATO PAO
code. This can produce PAOs for different ionization states of
the atom, for different eigenvalues and different confinement
radii. The code reads pseudo-potentials in the FHI (Fritz-Haber
Institute) format [25, 26] (which is compatible with the open
source plane-wave code ABINIT [27, 28] and can be generated
by the open source OPIUM code [29]).

Figure 2 shows the energy difference per atom relative
to a converged plane-wave result calculated using both the
local density approximation (LDA) and the PBE (Perdew-
Burke-Emzerhof) generalized gradient approximation (GGA)
functional for two amino acids: glycine and alanine. Two
different methods for generating PAO basis sets were used
(both are described above in section 4): the SIESTA package,
up to DZP; and increasing eigenstates, up to TZTP. Various

conclusions can be drawn from these preliminary calculations:
first, convergence is independent of functional and details of
bonding (the convergence is similar for both amino acids);
second, the SIESTA basis sets (which are generated based
on heuristically optimized ideas) are more efficient than the
eigenstate basis sets (which are simply generated for the
same cutoff); third, that good convergence towards the full
result is seen, but would probably require f -functions and/or
hydrogenic functions for full convergence. A full investigation
of the effects on convergence of different basis sets will be
presented in a future publication.

5. Discussion

Details of the implementation of PAOs as a basis set within the
linear scaling code CONQUEST have been presented, along with
the different schemes for generating multiple radial functions
for each angular momentum value. An important restriction on
the size and nature of the set of support functions was derived:
if there is a local point-group symmetry about an atom,
then the support functions must decompose into irreducible
representations of the point group. The importance of this was
illustrated for the methane molecule and the tetrahedral point
group.

Various calculations were presented. Preliminary results
on the convergence of total energy with basis-set size for
glycine and alanine indicated that good convergence relative
to plane-wave results is possible. The contraction of PAOs into
a smaller support function basis for glycine resulted in shifts of
the ∼1 mHa/atom result, while providing substantial increase
in efficiency; nominally the speed-up should be the cube of
the ratio of the number of basis functions in the two cases,
though practical tests show that actual performance gains may
be only up to half this (depending on implementation, system
size, etc). The assignment of PAOs to symmetry-preserving
and symmetry-breaking support function sets showed that great
care must be taken to maintain local symmetry for support
functions.

While this paper has been concerned with PAOs as a basis
set in the CONQUEST code, we recall that the blip functions,
which are also available, form a systematically convergent
basis set. These two basis sets allow different types of

4
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Figure 2. (a) Convergence with basis for SIESTA PAOs and
eigenvalue-based PAOs for glycine (top) and alanine (bottom).
Energy differences per atom are relative to converged plane-wave
result. (b) Convergence with plane-wave cutoff for comparison.

calculations to be performed: fast, qualitative calculations
with a minimal basis of PAOs (non-self-consistent calculations
add further speed); quantitative calculations using a full PAO
basis (possibly with contraction onto a smaller but symmetry-
preserving support function basis set); and systematically
converged calculations with blip functions (in a small support
function basis). This gives CONQUEST enormous flexibility in
exploring new systems quickly as well as accurately pursuing
specific aspects of known problems. A full exploration of the
convergence of both PAOs and blips will be presented in a
future publication.
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Appendix A. Matrix elements of PAOs

In this section, the scheme used for evaluation of integrals
between PAOs is described. Naturally, it has many points of
contact with other PAO-based schemes, such as PLATO [12] and

SIESTA [2]; we will therefore only present points of difference
with these existing schemes.

The overlap between PAO functions separated by a vector
R can be written:

S(R) =
∫
φ∗

1 (r)φ2(r − R) d3r. (A.1)

However, this convolution is rather awkward; it can be shown
(following some algebraic manipulation) that it reduces to:

S(R) =
l1+l2∑

l=l1−l2

m=+l∑

m=−l

∫
d	k((−1)m1Yl1−m1 (k̂)Yl2m2(k̂)Ylm(k̂))

×
(∫

k2 dkφ′
1(k)φ

′
2(k) jl(k R)

) (
8(i l)∗(i l1)(i l2 )∗

)

× Y ∗
lm(R̂), (A.2)

where

φ′
1(k) =

∫
r 2dr jl1(k R) f1(r). (A.3)

The integral between PAO functions and non-local pseudo-
potential projector functions uses an identical form to this. The
kinetic energy integrals only require the addition of a factor of
k2 within the integral.

Bessel functions up to twice the maximum value of l are
required (which at the moment is set to l = 3, but is trivially
extended). Rayleigh’s formula is used for analytic evaluation:

jn(x) = (−1)n
(

1

x

d

dx

)n (
sin(x)

x

)
. (A.4)

Bessel functions of order one or higher tend to zero at the
origin. For the high orders, Rayleigh’s formula relies on
cancellation of large numbers, so near the origin a series
expansion can become necessary:

jn(x) = 2n xn
∞∑

s=0

(−1)s(s + n)!
s!(2s + 2n + 1)! x2s. (A.5)

Real PAOs in CONQUEST are defined as:

φ(r) =
{

f (r)Clm Pl
m(cos θ) cos(mφ), m � 0

f (r)Clm Pl
m(cos θ) sin(mφ), m < 0

(A.6)

with the normalization constants found by integrating over φ
and θ :

Clm =
√

2l + 1(l − m)!
2π(l + m)! . (A.7)

Integrals over solid angles are reduced to Wigner 3- j
symbols (we note that this is one major difference to the
SIESTA implementation, where the integrals are performed
using Gaussian quadrature). This gives:

I	 =
∫

d	Yl1m1(	)Yl2m2(	)Yl3m3(	)

= 4π

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

(4π)3

×
(

l1 l2 l3

m1 m2 m3

) (
l1 l2 l3

0 0 0

)
(A.8)

5
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where

(
l1 l2 l3

m1 m2 m3

)
= (−1)l1−l2−l3 (−1)l3−m3

sl1l2
l3m1m2√
2l3 + 1

,

(A.9)
and sl1l2

l3m1m2
is a vector coupling coefficient.

This yields an easily extended, efficient implementation
of pseudo-atomic orbitals in terms of radial functions and
spherical harmonics.

Appendix B. Support functions and irreducible
representations

We stated in section 3 an important theorem that applies to
the support functions at an atomic site, when the electronic
ground state of the system is invariant under the operations
of a point group at that site. The theorem states that this
invariance can only be preserved if the space spanned by the
support functions at the atomic site decomposes into complete
irreducible representations of the point group. We sketch here
a formal proof of this theorem. The correctness of the theorem
does not depend on the basis sets used to represent the support
functions, but we will assume here that a PAO basis is used.
The PAO basis on each site consists of complete irreducible
representations of the rotational point group.

B.1. General ideas

The statement that the electronic ground state is invariant under
an operation S is interpreted here as meaning that the density
matrix ρ(r, r′) is invariant under this operation. As before, we
denote by φiα(r) the αth support function on atom i , and we
denote by φS

iα(r) the function into which φiα(r) is transformed
by the action of S. Then, with ρ(r, r′) given by:

ρ(r, r′) =
∑

iα, jβ

φiα(r)Kiα, jβφ jβ(r′), (B.1)

the application of S produces the transformed density matrix
ρS(r, r′) given by:

ρS(r, r′) =
∑

iα, jβ

φS
iα(r)Kiα, jβφ

S
jβ(r

′). (B.2)

Invariance under S requires that:

ρS(r, r′) = ρ(r, r′). (B.3)

The strategy of our proof will be to demonstrate that if the
space spanned by the support functions at the atomic site does
not decompose into complete irreducible representations then
there must exist functions ψ(r) such that:

∫
dr′ρ(r, r′)ψ(r′) = 0 and

∫
dr′ ρS(r, r′)ψ(r′) �= 0,

(B.4)

which implies that ρS(r, r′) �= ρ(r, r′). The proof will indicate
how such functions ψ(r) can be found; indeed, this is the key

aim of this section. Before coming to the proof itself, we
will establish notation, note an important invariance property
with respect to on-site linear combinations, and indicate the
structure of the proof. After these preliminaries, we shall then
outline the main points of the proof.

B.2. Notation

To simplify the notation, we require that the atomic sites are
labelled in such a way that the site at which the point-group
symmetry is studied is the site i = 1. The support functions
φ1α(r) on this site span a space �, called the ‘local support
space’. The question at issue is whether the function φS

1α(r)
into which φ1α(r) is transformed by the action of S is or is not
contained in �. If there is any φ1α(r) and any S for which
φS

1α(r) /∈ �, then the local support space is not invariant under
the operations of the point group. In such a case, we denote
by �̄S the space spanned by all the support functions φ1α(r)
on site i = 1, together with all the functions φS

1α(r) into which
they are transformed by S. We call �̄S the ‘extended local
support space’. The basic theorem then states that if �̄S �= �,
it follows that ρS(r, r′) �= ρ(r, r′).

B.3. On-site linear combinations

The proof to be presented below uses the fact that the ground-
state density matrix is unaffected if we define new support
functions on each atomic site as linear combinations of the old
support functions on that site. We mean by this that if φiα and
φ̃iα(r) are old and new support functions on site i , related by a
non-singular linear transformation:

φiα(r) =
∑

β

L(i)αβ φ̃iβ(r), (B.5)

then:

ρ(r, r′) =
∑

iα, jβ

φiα(r)Kiα, jβφ jβ(r′)

=
∑

iα, jβ

φ̃iα(r)K̃iα, jβφ̃ jβ(r′), (B.6)

where:
K̃iα, jβ =

∑

γ,δ

L(i)γ αKiγ, jδL( j)
δβ . (B.7)

This emphasizes the fact that the density matrix is essentially
determined by the local support space on every atomic site,
rather than by the choice of the individual support functions on
every site.

B.4. Structure of the proof

The proof to be presented below consists of three main parts,
which are as follows:

(i) If the local support space is not invariant under the action
of S, so that �̄S �= �, then the dimension ν̄S of �̄S

exceeds the dimension ν of �. We write ν̄S = ν + λ,
where 1 � λ � ν. We shall show that if �̄S �= � then,
by using the freedom to redefine the support functions by
taking on-site linear combinations, we can always ensure

6
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that φS
1α(r) /∈ � for 1 � α � λ, while φS

1α(r) ∈ �

for λ < α � ν. In other words, we can always
choose the support functions on site i = 1 so that for
only the first λ of the support functions φ1α(r) do the
transformed functions φS

1α(r) fail to belong to �. (This
linear transformation makes notation considerably simpler
throughout the proof.)

(ii) We shall then show that with �̄S �= �, and with the
support functions φ1α(r) chosen in the way we have just
described, it is always possible to find functions ψ(r)
having the following four properties:
∫

dr′ φiα(r′)ψ(r′) = 0 for all (i, α) (B.8)
∫

dr′ φS
jβ(r

′)ψ(r′) = 0 for j �= 1 and all β (B.9)
∫

dr′ φS
1α(r

′)ψ(r′) = 0 for all α > λ (B.10)

ξiα =
∫

dr′
λ∑

β=1

Kiα,1βφ
S
1β(r

′)ψ(r′) �= 0

for some (i, α). (B.11)

These can be summarized as follows: ψ is orthogonal
to all untransformed functions; ψ is orthogonal to the
transformed functions on sites away from site 1; ψ is
orthogonal to those functions on site 1 which lie within
�; and finally, the scalar ξiα can be found with a non-zero
value for at least one iα pair from the functions on site 1
lying outside�.

(iii) The proof will conclude with the demonstration that
a function ψ(r) having the foregoing properties also
satisfies the conditions:

∫
dr′ ρ(r, r′)ψ(r′) = 0,

∫
dr′ ρS(r, r′)ψ(r′) �= 0,

(B.12)

from which it follows that ρ(r, r′) is not invariant under
the action of S.

B.5. Main points of the proof

We now outline the three parts of the proof, giving the main
points.

Part 1. We start by justifying our statement that the
untransformed support functions φiα on site i = 1 can be
chosen so that only for 1 � α � λ do the transformed
functions φS

1α lie outside the local support space�. (Recall that
λ is the dimension of the extended local support space minus
the dimension of the local support space.) The basic idea can
be seen by considering the case λ = 1. A new function is
required to span the extended space �̄S , which we label χ1 and
choose such that χ1 /∈ �. Let the labelling be chosen so that
φS

11 /∈ �, and write the transformed function as:

φS
11(r) =

∑

β

c1βφ1β(r)+ χ1(r). (B.13)

Here we choose the coefficients c1β to ensure that χ1 is
orthogonal to �. Then for the other support functions φ1α

(α > 1), let the transformed functions be:

φS
1α(r) =

∑

β

cαβφ1β(r)+ dαχ1(r). (B.14)

But we can use the freedom to take linear combinations on
each atomic site to define new support functions φ̃1α so that
φ̃11 = φ11, but for α > 1 we take φ̃1α = φ1α + fαφ11, with the
coefficients fα chosen so that dα + fα = 0, which ensures that
their transformed versions are:

φ̃S
1α(r) =

∑

β

(cαβ + fαc1β)φ1β(r), (B.15)

which all lie within�. With these redefined support functions,
all the φ̃S

1α(r) lie within �, except for the first α = 1. This
concept can clearly be generalized to the case λ > 1, and this
justifies our statement.

We assume from now on that the support functions φ1α

on site i = 1 have been chosen so that only for 1 � α � λ

do the transformed functions fail to lie in �, and for these the
transformed functions are expressed as:

φS
1α(r) =

∑

β

cαβφ1β(r)+ χα(r), (B.16)

where all of the functions χα(r) (α = 1, . . . , λ) are orthogonal
to �.

Part 2. Here, we show the existence of functions ψ(r)
having the properties given in equations (B.8)–(B.11). In the
total space 	 spanned by all PAOs in the system, let 	̄1 denote
the subspace spanned by all the PAOs on atomic sites i �= 1.
Then the support functions φ1α (1 � α � ν) and the associated
functions χσ (1 � σ � λ) (see equation (B.16)) can each be
expressed as a component orthogonal to 	̄1 and a component
lying entirely within 	̄1:

φ1α = φ⊥
1α + φ

‖
1α (α = 1, . . . , ν)

χσ = χ⊥
σ + χ‖

σ (σ = 1, . . . , λ).
(B.17)

Now let T ⊥ denote the space of dimension ν + λ spanned by
all the φ⊥

1α and all the χ⊥
σ . Within T ⊥, we choose a set of λ

linearly independent functions χ̂σ that are orthogonal to all the
φ⊥

1α. Specifically, we choose the χ̂σ as a projection of χσ onto
the subspace of T ⊥ that is orthogonal to all the φ⊥

1α. With this
choice, we have 〈χβ |χ̂σ 〉 = 〈χ̂β |χ̂σ 〉, which will be useful later.
Clearly these functions χ̂σ are orthogonal to all functions in 	̄1

and are also orthogonal to all of the φ1α (α = 1, . . . , ν). If we
write ψ as:

ψ(r) =
λ∑

σ=1

hσ χ̂σ (r), (B.18)

with arbitrary coefficients hσ , then ψ(r) satisfies equa-
tions (B.8) and (B.9). It also satisfies equation (B.10), since
the φS

1α for α > λ are linear combinations of the φ1α. So all

7



J. Phys.: Condens. Matter 20 (2008) 294206 A S Torralba et al

that remains is to show that the coefficients hσ can be chosen
so that ψ also satisfies equation (B.11).

To show this, note first that not all Kiα,1β can be zero for
all (i, α) and for all β = 1, . . . , λ. If they were all zero,
then the support functions φ1β (β = 1, . . . , λ) would not
appear in the density matrix at all, and their behaviour under
transformation would be irrelevant. So choose an i and an α
for which there are non-zero elements Kiα,1β for at least one β
in the range 1 � β � λ. Call these i � and α�, and examine the
quantity:

ξi�α� =
∫

dr′
λ∑

β=1

Ki�α�,1βφ
S
1β(r

′)ψ(r′). (B.19)

But recalling equation (B.16) and noting that ψ(r) is
orthogonal to all φ1α, this can be rewritten as:

ξi�α� =
∫

dr′
λ∑

β=1

Ki�α�,1βχβ(r′)ψ(r′). (B.20)

If we substitute in equation (B.18) then, we find:

ξi�α� =
∫

dr′
λ∑

β=1

Ki�α�,1βχβ(r′)
λ∑

σ=1

hσ χ̂σ (r′) (B.21)

=
λ∑

β=1

Ki�α�,1β

(∫
dr′ χβ(r′)

λ∑

σ=1

hσ χ̂σ (r′)

)
(B.22)

=
λ∑

β=1

Ki�α�,1β

(
λ∑

σ=1

hσ

∫
dr′ χβ(r′)χ̂σ (r′)

)
. (B.23)

Now this has the form of a scalar product ξi�α� = ∑λ
β=1 kβgβ

of two λ-component vectors. The first vector has components
kβ = Ki�α�,1β and the second has components:

gβ =
λ∑

σ=1

hσ

∫
dr′ χβ(r′)χ̂σ (r′)

=
λ∑

σ=1

hσ

∫
dr′ χ̂β(r′)χ̂σ (r′). (B.24)

It is clear from this that the coefficients hσ can be chosen to
yield any desired set of coefficients gβ , and in particular a set
of coefficients for which ξi�α� is non-zero. This shows that ψ
can be chosen to satisfy equation (B.11).

Part 3. For functions ψ(r) having the properties noted in
Part 2, it follows from equation (B.8) that

∫
dr′ ρ(r, r′)ψ(r′) =

0. But we note also that:∫
dr′ ρS(r, r′)ψ(r′) =

∑

iα

φS
iα(r)

×
∫

dr′ ∑

jβ

Kiα, jβφ
S
jβ(r

′)ψ(r′). (B.25)

On the right, all the terms for j �= 1 vanish, as do the
terms j = 1 and β > λ (see equations (B.9) and (B.10)),

so we have:∫
dr′ ρS(r, r′)ψ(r′) =

∑

iα

φS
iα(r)

×
∫

dr′
λ∑

β=1

Kiα, jβφ
S
1β(r

′)ψ(r′) =
∑

iα

ξiαφ
S
iα(r). (B.26)

Since not all ξiα vanish, and since the φS
iα(r) are linearly

independent, we conclude that
∫

dr′ ρS(r, r′)ψ(r′) �= 0.
This completes the proof that ρ(r, r′) �= ρS(r, r′). The

conclusion is that for the point-group symmetry of the ground
state to be preserved, the support functions at the atomic site
must form complete irreducible representations.
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